

IB Computer Science SL

Pre-requisites: Computer Science Pre AP/IB

Instructor: Mr. Barry Wagner

E-Mail Address: bwagner@dentonisd.org

Conference Period: A2, B4

Phone: 940-369-2067 **Tutorials:** M-F 8:10 – 8:50

Course Description

Computer Science SL emphasizes the object-oriented programming methodology introduced in the Pre-IB course with a concentration on problem solving, algorithm development, and program design.

Resources

Web-based curriculum (http://bwagner.org)

Aims and Objectives

It is in this context that the Diploma Programme computer science course should aim to:

- provide opportunities for study and creativity within a global context that will stimulate and challenge students developing the skills necessary for independent and lifelong learning
- 2. provide a body of knowledge, methods and techniques that characterize computer science
- 3. enable students to apply and use a body of knowledge, methods and techniques that characterize computer science
- 4. demonstrate initiative in applying thinking skills critically to identify and resolve complex problems
- 5. engender an awareness of the need for, and the value of, effective collaboration and communication in resolving complex problems
- 6. develop logical and critical thinking as well as experimental, investigative and problemsolving skills
- 7. develop and apply the students' information and communication technology skills in the study of computer science to communicate information confidently and effectively
- 8. raise awareness of the moral, ethical, social, economic and environmental implications of using science and technology
- 9. develop an appreciation of the possibilities and limitations associated with continued developments in IT systems and computer science
- 10. encourage an understanding of the relationships between scientific disciplines and the overarching nature of the scientific method.

Students will be expected to fulfill the following objectives:

- 1. Know and understand:
 - a. relevant facts and concepts
 - b. appropriate methods and techniques
 - c. computer science terminology
 - d. methods of presenting information.
- 2. Apply and use:
 - a. relevant facts and concepts
 - b. relevant design methods and techniques
 - c. terminology to communicate effectively
 - d. appropriate communication methods to present information.
- 3. Construct, analyse, evaluate and formulate:
 - a. success criteria, solution specifications including task outlines, designs and test plans
 - b. appropriate techniques within a specified solution.
- 4. Demonstrate the personal skills of cooperation and perseverance as well as appropriate technical skills for effective problem-solving in developing a specified product.

IB Assessment

Student assessment is carried out by a combination of an external examination conducted at the end of the course, and an internal assessment, carried out by the teacher. The following tables show the approximate percentage weighting in a typical examination session for each of the assessment objectives across each of the components.

Assessment objective	Paper 1	Paper 2	Internal assessment	Overall
1. Demonstrating knowledge and understanding	24	13	9	46
2. Applying and using	13	7	8	28
3. Constructing, analysing, evaluating and formulating	8	5	4	17
4. Using skills	n/a	n/a	9	9
Component weighting	45%	25%	30%	100%

Internal Assessment (IA)

As mentioned above a large part of a student's assessment is a component called the Internal Assessment (IA). In this course the IA is a computer program that a student must design and implement for a specific client. The program must be developed using the following criterion.

Criterion		
Criterion A: Planning		
Criterion B: Solution overview		
Criterion C: Development		
Criterion D: Functionality and extensibility of product		
Criterion E: Evaluation		

There will be specific due dates for each of the 5 criterion. If a student does not complete the criterion by the assigned due date mandatory tutorials will be assigned until the student completes the work. A significant amount of class time will alotted for students to work on their IAs.

Grading Policy

Major Summative Assessment		70%
- 1	Unit Tests, Programming Projects	
Min	or Summative Assessment	30%
-]	Lab Exercies, Quizzes, IA rough drafts	
Formative Assessment		0%
_ '	Worksheets	

Rules/Class Procedures

- 1. Be on time.
- 2. Complete labs in the time allotted.
 - If a student falls more than 1 unit behind the pace of the course mandatory tutorials will be assigned until the work is completed.
- **3.** This Computer lab is for learning computer science and computer programming.
 - Students must complete all assignments before doing work for other classes.
 - Students must complete all assignments before playing on the Internet
 - Students may only use cell phones the last **10 minutes** of class or if they have completed all assignments.
 - An assignment is not complete until it is recorded on teacher's clipboard or placed in the assignment box.

- 4. Do not install any software on a computer in this lab.
- 5. Do not use a **proxy server** to by-pass school district filtering.
- 6. Stay in your seat until the bell rings or it is time to dismiss.
- 7. Peer tutoring is encouraged

Course Content and TimeLine

TY 's 1 NY 1 O s	XX7 1 1
Unit 1 Number Systems	Week 1
- Number Systems	
- Number Conversion	
- Data Representation	
Unit 2 System Fundamentals	Week 2-3
- What is a System	
- System Planning	
- System Design	
Unit 3 Pseudo code and Flowcharts	Week 4
- Pseudo code	
- Flowcharts	
Unit 4 Tracing an Algorithm	Week 5
- Trace Tables	
Unit 5 Computational Thinking	Week 6
- Thinking Procedurally	
- Thinking Logically	
- Thinking Ahead	
- Thinking Concurrently	
- Thinking Abstractly	
Unit 6 Methods Review	Week 7-9
- Methods	
- Static Methods	
- Why Use Methods?	
 Overloaded Methods 	
End of 1st 9	Weeks
Unit 7 Classes Review	Week 10-12
- Class Decomposition	
- Anatomy of a Class	
- Constructors	
- Accessor Methods	
- Mutator Methods	
- toStrting Method	
Unit 8 Arrays Review	Week 12-14
- Arrays	
- Traversing Arrays	
- Logical Size	
- Object Arrays	
- Object Parameters	
- Array Parameters	
Unit 9 ArrayList	Week 15-18
- ArrayList	
ı	

Wasanan Classes				
- Wrapper Classes				
- Enhanced for Loop				
- remove Method				
End of 2 nd 9 Weeks				
Unit 10 Inheritance	Week 19-22			
- Inheritance				
- Polymorphism				
Unit 11 Abstract Classes	Week 23-24			
Unit 12 Interfaces	Week 25			
- Interfaces				
 Comparable Interface 				
- Polymorphism				
Unit 13 Searching	Week 26-27			
- Linear Search				
- Binary Search				
 Comparable Interface 				
End of 3rd 9 Weeks				
Unit 14 Sorting	Week 27-28			
- Sorting				
- Bubble Sort				
- Selection Sort				
Unit 15 Computer Organization	Week 29-30			
Unit 16 Networks	Week 31-32			
Unit 17 Test Prep	Week 33-34			
End of 4 th 9 Weeks				